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ABSTRACT

The attB1 site in the Gateway (Invitrogen) bacterial
expression vector pDEST17, necessary for in vitro
site-specific recombination, contains the sequence
AAA-AAA. The sequence A-AAA-AAG within the
Escherichia coli dnaX gene is recognized as
‘slippery’ and promotes �1 translational frameshift-
ing. We show here, by expressing in E. coli several
plant cDNAs with and without single nucleotide
deletions close to the translation initiation
codons, that pDEST17 is intrinsically susceptible
to �1 ribosomal frameshifting at the sequence
C-AAA-AAA. The deletion mutants produce
correct-sized, active enzymes with a good correla-
tion between enzyme amount and activity. We
demonstrate unambiguously the frameshift through
a combination of Edman degradation, MALDI-ToF
mass fingerprint analysis of tryptic peptides and
MALDI-ToF reflectron in-source decay (rISD)
sequencing. The degree of frameshifting depends
on the nature of the sequence being expressed and
ranged from 25 to 60%. These findings suggest
that caution should be exercised when employing
pDEST17 for high-level protein expression and that
the attB1 site has some potential as a tool for
studying �1 frameshifting.

INTRODUCTION

Although ribosomes normally accurately translate
mRNAs into proteins, sequences in certain mRNAs
direct the ribosome to undergo non-canonical translation
events including: (1) translational read-through of stop
codons where the ribosome incorporates an amino acid
residue at this position, (2) translational bypassing where
a peptidyl-tRNA::ribosome complex ‘hops’ to a codon
further downstream in the mRNA and resumes protein
chain elongation and (3) programmed translational
frameshifting (hereafter referred to as ‘frameshifting’ for

brevity), in which stimulatory signals in the mRNA
induce the ribosome to slip one nucleotide upstream
or downstream and then resume protein synthesis in
the �1 or þ1 alternative open reading frame (ORF).
These events, termed ‘recoding’, result in non-standard
translation of mRNA-encoded information that is not
normally expressed (1–3).

Frameshifting is involved in the expression, in the
broad sense of protein production, of a minority of genes
in a wide range of organisms including viruses, bacteria
and eukaryotes (3). Evidence suggests that it usually
occurs due to the stalling of the ribosome at a stimulatory
mRNA structure, such as a pseudoknot or a stem loop,
located a few nucleotides downstream of a ‘slippery’
sequence such as the heptamer X-XXY-YYZ (X and Z
can be any nucleotide, and Y can be A or U) (1,2), but
there are other slippery sequences that do not conform
to this motif (4). Although the secondary structure
downstream of a slippery sequence causes the ribosome
to pause (5–7), pausing itself is not sufficient to effectuate
frameshifting, as stem loops and pseudoknots of similar
thermodynamic stability are not necessarily effective
frameshift stimulators (8). The parameters known to
contribute to the efficiency of �1 frameshifting are the
sequence of the slippery heptamer, the downstream
secondary structure, and the length and sequence of the
spacer between the two cis-acting signals (9–11).

In comparison to þ1 frameshifting, there are relatively
few described examples of �1 frameshifting in cellular
genes (3). One example with obvious biological relevance
in bacteria is the slippery sequence A-AAA-AAG of the
Escherichia coli dnaX gene (12). When the full-length
mRNA of this gene is translated it encodes the t subunit
(71.1 kDa) of DNA polymerase III. However, around
50% of the time the ribosomes that initiate translation
frameshift to the �1 frame at the slippery sequence
approximately two-thirds of the way through the
coding region before terminating to synthesize the shorter
g subunit (47.5 kDa) of the holoenzyme (13–15).
The frameshift occurs at the A-AAA-AAG sequence by
tandem slippage of both P- and A-site tRNALys species
from the 0 (A-AAA-AAG) to the �1 frame (AAA-AAA)
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(16,17). This process is dependent upon two
stimulatory sequences, a Shine–Dalgarno-like sequence
10- nucleotides upstream of the A-AAA-AAG and a stem-
loop structure 5- nucleotides downstream of it (18).

In this study, we investigated whether the DNA
sequence AAA-AAA present in the Gateway
(Invitrogen) bacterial expression vector pDEST17 attB1
site, which is necessary for in vitro site-specific recombina-
tion, is prone to �1 frameshifting. We cloned three
cDNA-encoding enzymes of the plant oxylipin pathway
(19) to study the effect in E. coli: an Arabidopsis thaliana
allene oxide synthase (AOS), a Medicago truncatula
hydroperoxide lyase (HPL) and a Pisum sativum
lipoxygenase (LOX). The cDNAs were cloned as 0
frame wild-type sequences to assess control expression
levels with the pDEST17 vector but were also cloned
missing one nucleotide from the 50 end of the cDNAs, such
that enzyme synthesis was dependent on a �1 frameshift-
ing event. Our findings indicate that genes expressed using
the Gateway pDEST17 vector can undergo a remarkably
high degree of �1 frameshifting at this slippery sequence.

MATERIALS AND METHODS

Cloning and expression of oxylipin enzymes

A M. truncatula cDNA clone (NF034B10IN1F1080),
which encoded a predicted full-length HPL (GenBank
accession number: AJ316562), was obtained from the
Samuel Roberts Noble Foundation, Ardmore, USA and
named MtHPLF. An A. thaliana (Columbia ecotype)
full-length AOS cDNA clone (U17068) was acquired from
the Arabidopsis Biological Resource Centre, The Ohio
State University, USA, and was named AtAOS (GenBank

accession number: AF172727). A P. sativum LOX cDNA
(PsLOX3) (GenBank accession number: X07807) used in
this study was previously cloned by Ealing and Casey (20).
All clones were propagated with appropriate antibiotics
and plasmid DNA was extracted (Wizard SV Minipreps,
Promega).
The cDNA sequences of AtAOS, MtHPLF and

PsLOX3 were PCR amplified with Pfu Ultra according
to the manufacturer’s instructions (Stratagene). PCR
products were purified and cloned into pDONR201
entry vector via the BP reaction (Gateway Technology,
Invitrogen). For all cDNAs, two pENTRY clones
from individual bacterial colonies were subsequently
used in LR reactions (Invitrogen) with the T7 promoter
expression vector pDEST17 (to obtain N-terminally
fused 6� His-tagged proteins). Cloned PCR products
were sequence checked in the pDEST vectors and were as
predicted.
To determine if a �1 frameshifting event was occurring

at the pDEST17 sequence AAA-AAA (Figure 1), a
restorative single-nucleotide deletion was incorporated
into the primers used to amplify the oxylipin enzyme
cDNA sequences and these clones were termed frameshift
(FS). Nucleotides shown underlined were removed from
AtAOS and PsLOX3 attB1 primers (below and Table 1)
to produce the FS constructs. The AtAOS cDNA was
amplified without the first 96 bp predicted to encode a
32 amino acid N-terminal chloroplast targeting sequence
(ChloroP; (21)), using the forward attB1 primer 50-GGG
GACAAGTTTGTACAAAAAAGCAGGCTTGGCTTC
CGGGTCAGAAACTCC-30 and reverse attB2 primer
50-GGGGACCACTTTGTACAAGAAAGCTGGGTAC
TAAAAGCTAGCTTTCCTTAACGAC-30. The PsLOX3
cDNA was amplified using the forward attB1 primer

6x His 
T7

promoter ATG attB2Gene of interest attB1 

RBS

pDEST17 
AmpicillinR

Origin of replication

ATG TCG TAC TAC CAT CAC CAT CAC CAT CAC CTC GAA TCA ACA AGT TTG TAC AAA AAA GCA GGC T 

6x His codons attB1

1   2  3  4  5  6 7   8  9 10  11  12 13  14 15  16 17 18  19  20  21 

Figure 1. Diagrammatic representation of the pDEST17 expression vector. A schematic (not to scale) illustrating the Gateway bacterial expression
vector and its nucleotide sequence from the initiating codon (black box), the N-terminal 6� His codon fusion (diagonal grey stripes) and the attB1
recombination sequence (horizontal grey stripes) containing the putative slippery site underlined. T7 promoter and the ribosome-binding site (RBS)
are shown in open boxes. Codon numbers are shown above nucleotide triplets.
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5 0-ACAAGTTTGTACAAAAAAGCAGGCTTCAT
GTTTTCAGGCGTGACTGGTATTCTGAAT-30 and
reverse attB2 primer 50-GGGGACCACTTTGTACAAG
AAAGCTGGGTCCTAGATGGAGATACTATTAGG-30.
Sequence analysis of two independently cloned MtHPLF
cDNAs revealed one had been PCR amplified and cloned
without errors (MtHPLF-WT) but the second had
serendipitously been amplified with a 1-bp guanine
nucleotide deletion (MtHPLF-FS) located three bases
into the cDNA sequence. The MtHPLF cDNAs were
amplified using the forward attB1 primer 50-GGGGA
CAAGTTTGTACAAAAAAGCAGGCTCAATGGCTT
CCTCATCAGAAACC-30 and reverse attB2 primer
50-GGGGACCACTTTGTACAAGAAAGCTGGGTAT
CAGACGGTGGATGAAGCCTTAAC-30. Sequencing
of the AtAOS and PsLOX3 pDEST17 DNA inserts
indicated sequences both with and without the 1-bp
deletion were error free and as predicted.

Expression and purification

Cultures (10ml or 1 l Luria–Bertani broth without
glucose, containing 50 mg/ml ampicillin (Melford
Laboratories Ltd)) of E. coli strain BL21 (DE3) trans-
formed with expression vectors were grown at 378C to
A600 1.0–1.1 with shaking at 200 r.p.m., transferred to
218C, and gene expression was induced with isopropyl
b-D-thiogalactopyranoside (IPTG; 1mM) for 24 h. Cells
were harvested by centrifugation at 28 000� g and the
pellets frozen at �808C. Cell pellets were thawed and
extracted at room temperature with BugBuster (Novagen)
according to the manufacturer’s instructions.
Homogenates were then transferred to 50-ml Oakridge
tubes, vortexed for 1min and mixed gently by inversion on
a Spiramix 5 (Denley) for 20min. His-tagged proteins
were purified at 48C as described earlier for MtHPLF
by immobilized metal affinity chromatography using
cobalt as a ligand (22). For removal of detergent and
histidine from the proteins the concentrated samples
were then injected onto a HiLoad Superdex 26/60 gel

filtration column (GE Healthcare) or a HiPrep 26/10
rapid desalting column (GE Healthcare) equilibrated
with 100mM sodium phosphate buffer, pH 6.5 and
eluted with the same buffer at 2ml/min (gel filtration)
or 10ml/min (desalting). The concentration of
MtHPLF was determined using a molar extinction
coefficient of 120 000M�1 cm�1 at 391 nm (22). The
Reinheitzahl (Rz) value of the purified MtHPLF
protein preparations was �1.3, indicating purification to
homogeneity.

Reverse transcription of RNA to determine translational
frameshifting or transcriptional slippage

Total cellular RNA was isolated from E. coli BL21
(DE3) cells expressing WT and FS AtAOS, MtHPLF
and PsLOX3 cells 6 h post-IPTG induction using the
RNAeasy kit (Qiagen) according to the manufacturer’s
instructions. First strand cDNA synthesis was performed
using the Omniscript reverse transcriptase (Qiagen) as
recommended by the manufacturer with an oligo
specific to the AtAOS, MtHPLF or PsLOX3; AOSR1
50-CGTTGACGGCATGTAAGTACC-30, HPLF4Rev
50-CTAGACTTCACTGTCCATGC-30, or PsLOX3-3205
50-GTGAGATTATCAACCGTGGAACCG-30). PCR
reactions were performed using Pfu Ultra DNA polymer-
ase (Stratagene) according to the manufacturer’s instruc-
tions using a primer set designed to the expression vector:
pDEST17 His tag, 50-CATCACCATCACCATCAC-30;
and the cDNA-specific oxylipin oligo above. To check for
plasmid contamination, samples of the RNA preparations
were RNase treated using standard methods (23) and gave
no PCR signal, indicating that there was no DNA
contamination. The PCR cDNA products were run on
ethidium-stained agarose gels, the bands cut and cleaned
using the QIAquick gel extraction kit (Qiagen) and
sequenced.

Enzyme activity measurements

AtAOS and MtHPLF activities were determined in a
0.5-ml assay mixture containing 20 mM 13-HPOT
(13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic
acid, supplied by Prof Mats Hamberg (Karolinska
Institute, Sweden)), in 100mM sodium phosphate buffer,
pH 6.5. The decrease in A234 was followed for 20–60 s at
258C and converted to moles of substrate using a molar
absorption coefficient of 25mM�1 cm�1 (24). PsLOX3
activity was measured using linoleic acid as a substrate
according to (25).

SDS-PAGE and western blot analysis

Protein concentration was determined using Bradford
reagent (BioRad) or the BCA Protein Assay kit (Pierce)
with bovine serum albumin (BSA) as a reference. Samples
for SDS-PAGE were prepared by mixing aliquots of the
protein with NuPAGE sample buffer (Invitrogen) and
heated at 708C for 10min. Protein samples were run on
NuPAGE 4–12% gradient Bis-Tris gels at 150V for 1 h
with MES SDS running buffer (Invitrogen) and stained
with Coomassie blue. For western blot analysis, gels were
electrotransferred to a Protran BA 85 nitrocellulose

Table 1. The expression clones used to study pDEST17 frameshifting.

To generate WT and FS constructs, the AtAOS, PsLOX3 and

MtHPLF gene sequences were cloned downstream of the pDEST17

attB1 site (bold). The nucleotides underlined indicate the bases removed

to study �1 ribosomal frameshifting events occurring at the attB1

sequence

Expression
clone

Frame Sequence

AtAOS-WT WT 50-TAC AAA AAA GCA GGC TTG
GCT TCC GGG-30

AtAOS-FS �1 50-TAC AAA AAA GCA GGC TTG
CTT CCG GGT-30

MtHPLF-WT WT 50-TAC AAA AAA GCA GGC TCA
ATG GCT TCC-30

MtHPLF-FS �1 50-TAC AAA AAA GCA GGC TCA
ATG CTT CCT-30

PsLOX3-WT WT 50-TAC AAA AAA GCA GGC TTC
ATG TTT TCA-30

PsLOX3-FS �1 50-TAC AAA AAA GCA GGC TTA
TGT TTT CAG-30
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membrane (Schleicher and Schuell BioScience) using the
Xcell Surelock electrophoresis and transfer apparatus
(Invitrogen). The membrane was blocked overnight at 48C
in 3% (w/v) BSA, Tris-buffered saline solution containing
0.05% Tween 20. Proteins were detected using a mouse
anti-His tag monoclonal antibody (Novagen) and a goat
anti-mouse secondary antibody conjugated to alkaline
phosphatase (Novagen), and colour was developed.

Edman sequencing

An aliquot of 1 nmol of MtHPLF-FS or MtHPLF-WT
protein taken from a 10mg/ml solution in 100mM sodium
phosphate buffer, pH 6.5 was diluted to 30 ml with water
and applied to a ProSorbTM cartridge (Applied
Biosystems) according to the manufacturer’s instructions.
Sequencing was carried out from the polyvinylidene
difluoride (PVDF) disc using a model 494 Procise
sequencer (Applied Biosystems) run in the pulsed-liquid
mode.

Mass spectrometry

All mass spectrometry was carried out on a standard
pulsed ion extraction Reflex III MALDI-ToF mass
spectrometer (Bruker) equipped with a 2-GHz digitizer
and gridless reflector and source. A 337-nm-wavelength
nitrogen laser was used to desorb/ionize the matrix/
analyte material, and ions were detected in positive ion
reflectron mode.

MALDI-ToF peptide mass fingerprinting

Samples were run on SDS-PAGE, excised, reductively
alkylated and digested with porcine-modified sequencing
grade trypsin (Promega). Acidified digests were spotted
directly onto a thin layer of matrix on a stainless steel
target plate for analysis by MALDI-ToF MS. The matrix
consisted of the following: four parts of a saturated
solution of a-cyano-4-hydroxycinnamic acid in acetone
was mixed with one part of a 1:1 mixture of acetone:iso-
propanol containing 10mg/ml nitrocellulose. Digests were
externally calibrated against a calibration curve of seven
peptides to yield data with mass accuracies of better
than 50 ppm. These calibrated spectra were searched
against a weekly updated copy of the SPtrEMBL database
using an in-house copy of the Mascot search tool
(www.matrixscience.com).

MALDI-ToF reflectron in-source decay (rISD) analysis

MtHPLF-FS protein (Rz 1.3) was diluted to give a sample
concentration of 20–50 pmol/ml. Samples were prepared
for MALDI by mixing with a saturated solution of matrix
in the ratio 1:1. Matrix solution was made by dissolving
3,5-dimethoxy-4-hydroxycinnamic acid (Fluka) in 30%
acetonitrile/0.05% trifluoroacetic acid to saturation.
About 0.5 ml of this combined mix was spotted onto a
polished stainless steel target and allowed to crystallize
prior to analysis. rISD spectra were obtained by first
ascertaining that the intact protein could be seen clearly.
An optimized parameter set, with a pulsed ion extraction
medium delay setting, was used to zoom in on the mass

range 1000–4000 and the laser power increased until
fragmentation along the protein backbone could be seen.
Spectra of 1000–2000 shots were acquired. Sinapinic acid
was used specifically to encourage fragmentation at the
N-terminus of the protein. Calibration was carried out
using the standard peptide mixture used for peptide mass
fingerprinting of this same mass range.

Site-directed mutagenesis

Mutations altering individual nucleotides (in bold
and underlined below), designed to destabilize the
predicted MtHPL-FS stem-loop structure, were generated
using an oligonucleotide-directed in vitro mutagenesis
kit (QuikChange; Stratagene). The MtHPL-FS cDNA
was modified using the following mutagenic oligonucleo-
tides with their complementary sequences; T29C
50-GTACAAAAAAGCAGGCTCAACGCTTCCTCAT
CAGAAAC-30 and T29C-ANTISENSE 50-GTTTCTG
ATGAGGAAGCGTTGAGCCTGCTTTTTTGTAC-30;
C31G 50-AAAAAAGCAGGCTCAATGGTTCCTCAT
CAGAAACCTC-30 and C31G ANTISENSE 50-GA
GGTTTCTGATGAGGAACCATTGAGCCTGCTTTT
TT-30. The T29C nucleotide modification altered the
MtHPL-FS codon from AAT to AAC but did not change
the amino acid incorporated into the MtHPL-FS peptide
as both codons encode the residue asparagine. However,
modification of the C31G nucleotide did change the
amino acid from alanine (encoded by GCU) to glycine
(encoded by GGU), which is not a rare E. coli codon.
The number in the name of each oligonucleotide refers to
the number of nucleotides from the 50 adenine of the
MtHPL-FS ATG start codon. All mutations were
sequenced to confirm veracity.

Statistical analysis of theE. coli genome

The file NC_000913.ffn containing the nucleotide
sequences of the coding regions of the K12 genome was
downloaded from the National Center for Biotechnology
Information’s website (ftp://ftp.ncbi.nih.gov/genomes/
Bacteria/Escherichia_coli_K12/). A Perl script was written
to count the occurrences of C-AAA-AAA and A-AAA in
the right frame in the coding sequences contained in
the file NC_000913.ffn. Another Perl script was written to
produce a table of codon usage from this file and the
probability with which a particular codon encodes a
particular amino acid was calculated by dividing its codon
usage by the sum of usages of all synonymous codons.

RESULTS

Frameshift assay constructs

Three plant oxylipin cDNAs, AtAOS, MtHPLF and
PsLOX3, were cloned into the pDEST17 vector in the
correct reading frame (WT) according to the manufac-
turer’s instructions. The first 32N-terminal amino acids of
the AtAOS protein, which is a predicted chloroplast-
targeting sequence that potentially could reduce enzyme
activity, was omitted as part of the cloning. In addition,
constructs were made with a one-base deletion (FS) in the
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oxylipin cDNA to study possible frameshifting events
at the homopolymeric adenine sequence, AAA-AAA,
within the attB1 site of the Invitrogen pDEST17 vector.
A transcriptional slippage or translational frameshifting
event occurring at this sequence would obviate the effect
of the deletion in these clones and produce active enzymes.
The constructs were sequenced and transformed into
E. coli BL21 (DE3) expression cells.

Measurements of enzyme activity

Enzymatic assays of the crude MtHPLF-FS E. coli
extracts showed that a fully functional protein was being
produced, even though a truncated peptide of 35 amino
acids (aa) (3.9 kDa), 469 aa shorter than the wild-type
MtHPLF-WT protein, was predicted. Kinetic data using
the substrate 13-HPOT (Figure 2) showed the specific
activity after 24-h induction was over twice as high
(11.84 mmol/min/mg protein versus 5.05mmol/min/mg
protein) for the MtHPLF-FS frameshift mutant expres-
sion clone compared to the wild-type MtHPLF-WT.
To determine if this frameshifting effect was a phenom-

enon particular to the MtHPLF cDNA, we cloned and
expressed other DNA sequences both with and without
a restorative 1-bp deletion near the 50 ends. The first,
AtAOS, was a member of the same P450 sub-family of
CYP74s as the MtHPLF, and the second, PsLOX3,
was an unrelated cDNA encoding a plant non-haem
iron-containing LOX that catalyses the oxidation of
polyunsaturated fatty acids.
The AtAOS-FS and PsLOX3-FS constructs were

predicted to encode truncated peptides of 3.5 and
3.1 kDa, respectively. Enzymatic activity assays revealed,
however, that both the FS mutants and WT clones
expressed active, soluble proteins in crude E. coli extracts.
Interestingly, the specific activity ratios of the wild type,
compared to mutant, PsLOX3 and AtAOS enzymes
differed from that of MtHPLF. The pDEST17 PsLOX3-
WT and -FS clones expressed proteins with roughly
equal units of specific activity (0.5 mmol/min/mg protein)
with the substrate linoleic acid after 24 h, whereas
the AtAOS-WT activity was around fourfold higher
(16.7 mmol/min/mg protein) than the corresponding dele-
tion mutant (3.9 mmol/min/mg protein) using 13-HPOT as
a substrate.

Western blot analysis ofWT and FS clones

To confirm functionality of the expressed proteins, we
performed western blot semi-quantification with E. coli
crude extracts using an anti-His tag antibody (Figure 3).
This experiment gave similar results to the activity
measurements described above: there were almost three-
fold (292%) higher quantities of AtAOS-WT protein
expressed in E. coli cultures compared to the FS clone and
the amount of MtHPLF-FS protein expressed was 49%
higher than that of the WT clone, showing that the
increased enzyme activity data correlated with increased
protein amounts. However, the amount of PsLOX3 was
74% higher in the WT compared to the FS cultures even
though the activity measurements for these clones were
almost the same. This latter result may be due to the lack

of sensitivity of the spectrophotometric assay in measuring
the relatively low LOX activity. The important point is
that all three frameshift cDNAs produced correct-sized,
active enzymes. Based on the western data the frameshift-
ing efficiencies are approximately 60% (MtHPLF), 36%
(PsLOX) and 25% (AtAOS).

Nucleotide sequence analysis ofAtAOS,MtHPLF and
PsLOX3 RNAs

To examine if translation into an alternative reading
frame might be due to transcriptional slippage, the
pDEST17 attB1 region containing the putative slippery
site AAA-AAA was amplified from the mRNA popula-
tions of AtAOS,MtHPLF and PsLOX3 frameshift clones.
Sequence analysis of the cDNA-amplified products
spanning the A run showed a single RNA species was
present with six As (data not shown) from all clones, with
no additional A nucleotides. This indicates a �1 transla-
tional frameshifting event occurred with all clones, rather
than transcriptional slippage where a heterogeneous
mixture of six and seven A residues would be expected
to restore the ORF (26). It is very unlikely that a
homogeneous population of transcripts was preferentially
amplified, because the primer used to amplify the cDNA
and the primer set used to amplify a PCR product flanked
the attB1 region where the putative slippery sequence was
located.

Ribosomal frameshifting determination

To verify directly that the ribosomal frameshifting
had occurred at the AAA-AAA sequence in the RNA,
the MtHPLF-FS and -WT proteins were over-expressed
in E. coli and homogeneous proteins were obtained by
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Figure 2. Time course of AtAOS, PsLOX3 and MtHPLF WT- and FS-
specific activities as a function of time after induction. Escherichia. coli
BL21 (DE3) transformed with pDEST17 AtAOS-WT (blue line),
AtAOS-WT-FS (pink line), MtHPLF-WT (purple line), MtHPLF-FS
(brown line), PsLOX3-WT (yellow line) and PsLOX3-FS (cyan line)
clones were induced with 1mM IPTG and cell samples collected at the
indicated times. Enzyme activities were assayed as described in the
Materials and methods section.
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FPLC (22). MALDI-ToF MS analysis of tryptic peptides
from purified MtHPLF-FS and MtHPLF-WT revealed
that most of the peptides aligned over the entire length of
proteins, but information was apparently lacking from the
N-termini. To determine precisely where the frameshift
occurs, we obtained the unequivocal sequence of the first
21N-terminal amino acids of MtHPLF-FS using Edman
degradation. Residues 22–24 were not clear. In-source
decay sequencing yielded residues 11–35, aiding the
interpretation of that part of the sequence obtained by
Edman sequencing that was less clear. Residues 1–19
corresponded to amino acids encoded by the pDEST17
vector. At residue 20, a strong signal for Ser was detected;
this corresponds to the residue encoded by the �1 reading
frame, followed by Arg and Leu that would be con-
ventionally encoded after the leftward frameshift
(Figure 4). Armed with the revised sequence, the masses
of the N-terminal peptides were calculated and found
to be present in the initial MALDI peptide mass
fingerprint data.

Statistical analysis of the E. coli genome

To determine if the putative �1 frameshifting Gateway
attB1 slippery sequences were under-represented in E. coli,
statistical analysis was performed. In the E. coli genome,
there are 9897 instances of A-AAA and 333 instances of
C-AAA-AAA. The genes are listed in Supplementary
Tables 1 and 2, respectively. To assess possible representa-
tion biases of the sequences, codon usage for AAA
(3.36%), and the occurrence of A or C in the wobble
position (18.01 and 26.83%, respectively) were used
(codon usage is shown in Supplementary Table 3).
With unselected bias, in 1 346 260 codons of annotated
E. coli K12 ORFs, the sequence A-AAA should

occur 1 346 260� 0.1801� 0.0336¼ 8147 times and
C-AAA-AAA should occur 1 360 013� 0.2683�
0.0336� 0.0336¼ 412 times. This estimate does not take
into account that the sequences cannot occur in the first
or/and in the last position of the ORF. Therefore, the
C-AAA-AAA sequence is under-represented and A-AAA
is over-represented in the E. coli genome (�81 and 121%
of the expected values, respectively).

DISCUSSION

Programmed translational frameshifting is an alternative
mechanism of translation for a minority of genes and is
used by probably all organisms (27). Slippery sequences
are the cause for most �1 frameshifting events at runs of
homopolymeric nucleotides where the tRNAs tandemly
slip at the P- and A-sites, while maintaining the identity of
two nucleotides in the codon–anticodon interaction (1).
In this study, we predicted the nucleotide sequence
AAA-AAA present in the Invitrogen Gateway vector
pDEST17 attB1 recombination site may be ribosomally
slippery and prone to �1 translational frameshifting.
To test this hypothesis we cloned three different
plant oxylipin cDNAs, AtAOS, MtHPLF and PsLOX3,
as WT clones that require no recoding to produce
functional enzymes and as potential �1 FS constructs
that would synthesize active enzymes only if a recoding
event took place.
Initial activity assays indicated that both WT and FS

constructs expressed His-tagged functional proteins for all
enzymes, even though the predicted conventionally
translated �1 FS construct products were short peptides
of less than 5 kDa. Western blot analysis of crude E. coli
extracts using a His-tagged antibody did not detect any
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AtAOS wild type, lane 2 AtAOS frameshift; lane 3 MtHPLF wild type; lane 4 MtHPLF frameshift; lane 5 PsLOX3 wild type, lane 6 PsLOX3
frameshift. For western blot protein quantifications, 20 mg of total protein from cells expressing AtAOS or MtHPLF and 60 mg of total protein from
cells expressing PsLOX3 were transferred to a nitrocellulose membrane and detected with a monoclonal antibody against the His tag (B) (see
Materials and Methods for further details). (C) Digitally quantified band intensities from western blotting showing means and standard errors from
three independent samples. Black bars—WT, grey bars—FS.
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small peptides of this size, possibly because truncated
peptide products tend to aggregate and form insoluble
inclusion bodies. It is possible that the correct ORF of
the �1 FS constructs was repaired by transcriptional
slippage at the homopolymeric stretch of adenines in the
pDEST17 attB1 sequence, as happens in the A6 tract of
the rat p53 gene to yield an insertion of an extra A in �9%
of subcloned transcripts (28). Insertion and deletion
mutation within DNA sequences at stretches of As or Ts
is a well-documented phenomenon; such sequences
appear to be particularly vulnerable (29) due to misaligned
loops (30). We show here by RT-PCR that there is a single
homogeneous mRNA population with six adenines and
no other insertions or deletions in the expected transcripts
of the AtAOS, MtHPLF and PsLOX3 �1 FS constructs,
indicating that transcriptional slippage was not

responsible for the ORF restoration. Direct evidence
that �1 translational frameshifting was occurring came
from protein sequencing of the MtHPLF-FS product,
which showed that the reading frame shift at the
pDEST17 attB1 sequence results in a serine residue,
encoded by the nucleotides AGC, instead of an alanine
(GCA) at the predicted 20th amino acid position. We
propose �1 frameshifting is occurring, within the
Gateway attB1 recombination site, via one of two possible
mechanisms.

The first is the ribosomal tandem slippage of two
lysyl-tRNAs at the P- and A-sites at the heptameric
sequence C-AAA-AAA and the second is a single slippage
event of a peptidyl tRNALys at the hexanucleotide
sequence AAA-AAA. The former mechanism occurs
by translocation of a slippery heptameric sequence,

ACA AGU UUG UAC AAA AAA GCA GGC UCA AUG GCU UCC UCA UCA GAA ACC UCC UCA ACC AAC CUC CCC UUG AAA 
T   S   L   Y   K   K   A   G   S   M   A   S   S   S   E   T   S   S   T   N   L   P   L   K  
 
 

ACA AGU UUG UAC AAA AAA GCA GGC UCA AUG CUU CCU CAU CAG AAA CCU CCU CAA CCA ACC UCC CCU UGA  
T   S   L   Y   K   K   A   G   S   M   L   P   H   Q   K   P   P   Q   P   T   S   P   *    
                    K   S   R   L   N   A   S   S   S   E   T   S   S   T   N   L   P   L   K  
 

(A)

… 

(C) 
Translated 
attB1 site 

× 6 His 
tag 

3.9 kDa MtHPLF-FS truncated product 

N-terminal 
methionine 

57.1 kDa MtHPLF-FS protein 

MtHPLF-WT cDNA pDEST17 attB1 site 

14 aa 

frame 0 … 
… 

(B)

MtHPLF-FS cDNA pDEST17 attB1 site 

frame 0 

… 

frame −1 

14 aa 
19 aa 

Figure 4. The pDEST17 frameshift region. (A) The predicted RNA and deduced amino acid sequences of the pDEST17 MtHPLF-WT clone. Single-
letter abbreviations for amino acid residues are used. (B) The predicted RNA sequences of pDEST17 MtHPLF-FS and deduced amino acid
sequences for both the 0 frame and the �1 frameshift transcripts. The MtHPLF-FS construct has a guanine nucleotide deletion three bases into the
original MtHPLF cDNA sequence (underlined in (4A)), to repair ribosomal �1 frameshifting at the homopolymeric adenine sequence, AAA-AAA,
and restores the MtHPLF 0 ORF (one amino acid into the HPL protein), yielding a product of approximately the same size as the WT fusion
protein. (C) Diagrammatic representation of the predicted translated peptides from the pDEST17-expressed MtHPLF-FS RNAs and location of the
frameshift region. The hatched box at the C-terminus of the �4-kDa product represents the amino acids MLPHQKPPQPTSP and the dotted box
near the N-terminus of the �57-kDa product represents the amino acids RLNA. Solid grey MtHPLF protein sequence box not to scale.

1328 Nucleic Acids Research, 2007, Vol. 35, No. 4



C-AAA-AAA, to the �1 phase CAA-AAA, causing �1
frameshifting. The slippage of the tRNALys at the P-site
would maintain two codon–anticodon base-pairs (XAA),
and the new codon–anticodon, tRNALys, occupying the
A-site in the �1 ORF, would have matches at all three
nucleotide positions (AAA) relative to the lysine in
the 0 ORF. This hypothesis is consistent with the
tandem slippage model proposed by Jacks et al. (16)
and later refined by Weiss et al. (12), where each of the
two ribosome-bound tRNAs at the P- and A-sites slip
in the 50 direction to the �1 ORF only when each tRNA
maintains at least two codon–anticodon base pairs with
the RNA in the �1 shifted frame.

The second possible mechanism supposes that a
potential slippery tetramer with the sequence A-AAA
is sufficient to cause �1 frameshifting by slippage of a
peptidyl tRNALys to the �1 ORF when the A-site is
unoccupied. Two reported single tRNA slippage cases
with obvious similarities to the �1 frameshifting site in
this article are the genes that encode the capsid protein/
nucleic-acid-binding 12K (CP/12K) of potato virus M
(PVM) (31) and the insA-insB fusion protein of the IS1
insertion sequence (32). In both cases frameshifting occurs
by �1 slippage of a peptidyl tRNALys bound to AAA onto
the overlapping AAA codon at an A-AAA motif. The
single tRNA slippage of PVM and IS1 frameshifts are
extremely inefficient, allowing between 0.3 and 1% of
ribosomes to shift frames respectively. This low efficiency
may be a consequence of the very unusual mechanism
(33). The number of examples of the second proposed
mechanism are low; almost all cases of �1 frameshifting
occur by tandem slippage of tRNA anticodons on
heptanucleotide shift sites (16). The large difference in
frameshifting efficiency between the mechanisms may
suggest that the more traditional canonical frameshift
event, of tandem tRNA slippage, could be responsible for
the �1 frameshifting of the pDEST17 vector, because the
frameshifting efficiency is high.

It would be informative to modify by mutagenesis
nucleotides in the heptameric slippery site for comparative
composition studies on the efficiency of �1 frameshifting
but we are unable to do this due to Invitrogen’s strict
Limited Use Label Licenses No. 19 of the Gateway vector
pDEST17 which states: ‘The buyer cannot modify the
recombination sequence(s) contained in this product for
any purpose’.

The cloning of cDNAs for enzymes of oxylipin
metabolism allowed us to accurately quantify the recoding
efficiencies by measuring the relative amounts of enzyme
activity produced from the FS- and the WT- cloned
sequences. High �1 frameshifting efficiencies, of up to
60% compared to the control, were observed when the
MtHPLF-FS construct was expressed in E. coli.

Frameshifting rates are generally dependent on a
number of stimulatory sequences, including a downstream
hairpin or pseudoknot that causes slowing, or pausing,
of the ribosome long enough at the slippery sequence for
frameshifting to occur (34,35) and an upstream Shine–
Dalgarno sequence that pairs with the 16S RNA, causing
ribosomal ‘stress’ (1). Our analysis of the sequence
proximal to the pDEST17 slippery site found no potential

Shine–Dalgarno sequences. Secondary structure analysis
for stimulatory frameshifting sequences such as hairpin
loops (26), or pseudoknots (36) (Figure 5) of the highly
frameshifting MtHPLF-FS revealed that the RNA fold
with the lowest minimum free energy had a potential
stem-loop of five predicted Watson–Crick base pairs
(mfold (37)). This hairpin is thermodynamically more
stable and compact than those predicted in the RNAs
for the FS PsLOX3 and AtAOS stem-loop structures,
which have a maximum of two and four consecutive
paired nucleotides, respectively and may explain why
lower frameshift rates (of 36 and 25%, respectively)
were observed compared to the MtHPLF-FS clone.
The MtHPLF-FS secondary structure has some of the
characteristics that Antao and Tinoco (38) reported;
they found that hairpin tetraloops, with stem sizes of
four or five bases, could form extra stable hairpins when
the loop-closing base pair was A–U. If the stem-loop
structures predicted in Figure 5 are real then a combina-
tion of hairpin thermodynamic stability and/or the
identity of the A–U loop-closing base pair could explain
why the frameshifting efficiency is higher for MtHPLF-FS
RNA than the PsLOX3 and AtAOS transcripts. To test
this hypothesis we modified the MtHPLF-FS RNA
molecule using site-directed mutagenesis. First, we gener-
ated a single nucleotide point mutant to change the A–U
loop-closing pair to a non complementary A-C pair. In
addition, we modified a cytosine to a guanine that was
predicted to be the third nucleotide of a five base stem of
a stem-loop structure (see Figure 5). The predicted
secondary structures of the mutated MtHPLF-FS
RNAs were thermodynamically less stable (A–C pair:
�G¼�2.8 kcal/mol and cytosine to a guanine:
�G¼�0.1 kcal/mol) compared to the original MtHPLF-
FS RNA (�G¼�3.6 kcal/mol) (RNA secondary struc-
tures predicted by the mfold programme (37) are not
shown). The specific activities of both mutants with the
substrate 13-HPOT (data not shown) were not signifi-
cantly different from that of the MtHPLF-FS clone even
though the proposed stem loops in both mutants were
predicted to be thermodynamically less stable suggesting
the predicted secondary structures may not be accurate.
We also used an alternative secondary structure

prediction program, CONTRAfold, which allows full-
length RNA sequences to be submitted and is reported to
achieve the highest single-sequence prediction accuracies
to date (39). The probabilistic models (data not shown)
produced by CONTRAfold showed that the only RNA
sequence without any secondary structure around the
slippage site was the MtHPLF-FS sequence. In fact, all
other structures for both WT and FS clones used in this
study were predicted by CONTRAfold to have stem-loop
structures at the slippery site, with the 6A nucleotides
forming the loop of the hairpin. This RNA fold program
therefore suggests that secondary structures are not
required to enhance the high level of �1 frameshifting of
MtHPLF-FS and the slippage rate is actually reduced
when predicted RNA secondary structures are present,
as in AtAOS-FS and PsLOX3-FS. One explanation
could be that the heptameric sequence is unusually
slippery, obviating the need for a stimulatory secondary
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structure (33). Wilson et al. (40) showed that a
26-nucleotide sequence containing the homopolymeric
HIV-1 sequence U-UUU-UUA was efficient at �1
frameshifting in rabbit reticuloctyte and yeast cell-free
translation systems and was not dependent on stem-loop
structures, although later experiments by Parkin et al.
(41), using the entire HIV-1 gag-pol region, showed
that a distal stem-loop was necessary for maximal
frameshifting.
Short nucleotide sequences that lead to highly efficient

frameshifting without any stimulatory sequences, as
mentioned above, are extremely rare. One example is
þ1 frameshifting in Saccharomyces cerevisiae of the Ty1
retrotransposon (42). The Ty1 frameshift sequence of only
seven nucleotides, CUU-AGG-C, results in the synthesis
of a TYA-TYB fusion protein. The ribosomal frameshift-
ing occurs when the ribosomal A-site is vacant and the
P-site, occupied by the CUU-bound peptidyl-tRNA, slips
to the overlapping UUA codon during slow recognition of
the next codon, AGG (42). Such stochastic events lead to
high levels of erroneous frameshifting, producing aberrant
polypeptides. Therefore, short slippery sequences in
coding regions are strongly selected against, unless they
have evolved to serve a useful function. For instance, the
frameshift-prone Ty1 sequence is under-abundant and
under-represented in the coding regions of the S. cerevisiae
genome (43). We estimated whether the two proposed
Gateway �1 frameshift sequences were under-represented

in the E. coli genome. Statistical analysis revealed
that the A-AAA sequence was over-represented and the
C-AAA-AAA sequence was under-represented (121 and
80.8% of the expected values, respectively). Absence of
evidence of negative selection, as in the case of the A-AAA
sequence, suggests that this sequence may not be prone to
frameshifting, as is the case for the ‘non-shifty’ sequence
A-AAG-AAA that is also over-represented in the E. coli
genome (132%) (44). The under-represented sequence,
C-AAA-AAA, has a similar value to that reported (83%)
for the dnaX sequence, A-AAA-AAG (44), which
is known to be slippery and may suggest there is
negative evolutionary selection for this candidate �1
frameshift sequence in the Gateway attB1 site. The under-
representation may also suggest it may not require any
stimulatory elements for efficient frameshifting to occur,
similar to Ty1 (42).

We have shown unambiguously that the sequence found
within the Gateway expression vector pDEST17 attB1
recombination site is prone to �1 ribosomal frameshifting
and that the degree of frameshifting is dependent on the
sequence being expressed. It is likely the frameshift
sequence in the Gateway attB1 recombination site is
C-AAA-AAA instead of A-AAA. Two lines of evidence
support this hypothesis: higher frameshift rates have been
reported for tandem tRNA slippage events compared to
single-tRNA slippage ones that would occur with
the latter sequence; and the former sequence is
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Figure 5. Sequence and predicted secondary structures of the MtHPLF, AtAOS and PsLOX3-FS RNAs and putative �1 frameshift-inducing site.
The frameshift slippery sequence is shown in bold. All nucleotides are Watson–Crick base paired except the U:G wobble marked with a star in the
PsLOX3-FS RNA structure. The stem-loop structures were predicted using the mfold software (38). Thermodynamic free energy (�G) was calculated
at 378C and 1M Naþ concentration. The arrows next to the MtHPLF-FS RNA structure indicate the nucleotides mutated to study the possible
consequences of changes in the thermodynamic stability of the stem loop on �1 frameshifting.
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under-abundant and under-represented in the E. coli
genome, suggesting that there may have been negative
selection against it during evolution because truncated
polypeptide products produced by frameshifting can be
deleterious to the cell.
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